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Abstract
Question: How can we derive baseline/reference situations to
evaluate the impact of global change on terrestrial ecosystem
functioning?
Location: Main biomes (steppes to rain forests) of Argentina.
Methods: We used AVHRR/NOAA satellite data to charac-
terize vegetation functioning. We used the seasonal dynamics
of the Normalized Difference Vegetation Index (NDVI), a
linear estimator of the fraction of the photosynthetic active
radiation intercepted by vegetation (fPAR), and the surface
temperature (Ts), for the period 1981-1993. We extracted the
following indices: NDVI integral (NDVI-I), NDVI relative
range (Rrel), NDVI maximum value (Vmax), date of maximum
NDVI (Dmax) and actual evapotranspiration.
Results: fPAR varied from 2 to 80%, in relation to changes in
net primary production (NPP) from 83 to 1700 g.m–2.yr–1.
NDVI-I, Vmax and fPAR had positive, curvilinear relationships
to mean annual precipitation (MAP), NPP was linearly related
to MAP. Tropical and subtropical biomes had a significantly
lower seasonality (Rrel) than temperate ones. Dmax was not
correlated with the defined environmental gradients. Evapo-
transpiration ranged from 100 to 1100 mm.yr–1. Interannual
variability of NDVI attributes varied across the temperature
and precipitation gradients.
Conclusions: Our results may be used to represent baseline
conditions in evaluating the impact of land use changes across
environmental gradients. The relationships between functional
attributes and environmental variables provide a way to ex-
trapolate ecological patterns from protected areas across modi-
fied habitats and to generate maps of ecosystem functioning.

Keywords: Argentina; Biome; Evapotranspiration; NOAA/
AVHRR; NDVI; NPP; Surface temperature.

Abbreviations: CV = Coefficient of variation; Dmax = Date of
maximum NDVI; e = Light use efficiency; Et = Evapo-
transpiration; fPAR = Fraction of photosynthetic active radia-
tion intercepted by vegetation; MAP = Mean annual precipita-
tion; MAT = Mean annual air temperature; NDVI = Normal-
ized difference vegetation index; NDVI-I = NDVI integral;
NPP = Net primary production; PAL = Pathfinder AVHRR
Land; PUE = Precipitation use efficiency; Rrel = NDVI rela-
tive range; Ts = Surface temperature; Vmax = NDVI maximum
value
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Introduction

Identification of the effects of climatic change, desert-
ification or land use requires characterization of the
baseline structure and function of vegetation, including
patterns of spatial and temporal variation. Describing
the structure and functioning of the original vegetation
(prior to human influence, potential vegetation in the
sense of Tüxen 1956) and its temporal and spatial vari-
ability imposes a serious challenge. The most common
way to describe the original vegetation is by interpolat-
ing or extrapolating data from point observations of
undisturbed areas. Such spatial generalizations may be
based on models of the relationship between plant at-
tributes and climatic variables (Prentice et al. 1992;
Paruelo et al. 1998). In general, the description of the
original vegetation is based only on structural attributes
of the vegetation such as physiognomy, dominant species,
plant functional types proportions or total cover
(Stephenson 1990; Leemans & van der Born 1994).

Vegetation functioning, the exchange of matter and
energy with the environment, is often characterized by
net primary production (NPP). Many functional charac-
teristics, such as biomass consumption by herbivores
(Oesterheld et al. 1992) and net nitrogen mineralization
(Burke et al. 1997) are highly correlated with primary
production. NPP is then an integrative descriptor of
ecosystem functioning (McNaughton et al. 1989). NPP
is strongly dependent on the amount of absorbed radia-
tion and water availability. Monteith (1981) presented a
simple model where NPP is a linear function of the
annual integral of absorbed photosynthetic active radia-
tion (APAR). Water availability is the main control of
the amount of radiation absorbed by the canopy and
hence the major determinant of NPP in deserts, grass-
lands and savannas (Noy Meir 1973; Sala et al. 1988).

In spite of its significance, finding comparable NPP
data for a wide diversity of biomes is difficult. More-
over, mean or one year values are insufficient; baseline
conditions should be characterized from a long-term
database to identify temporal trends in vegetation
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attributes. Seasonal and interannual variability of vege-
tation functioning are both important time frames to
understand the variability of CO2 exchanges between
biosphere and atmosphere (Potter et al. 1999). Remotely
sensed data provide information that could be related to
photosynthesis and water fluxes. The fraction of the
photosynthetic active radiation absorbed by the canopy
(fPAR) and hence primary productivity (Box et al. 1989)
and evapotranspiration (Et) (Running & Nemani 1988;
Di Bella et al. 2000) can be estimated from satellite data.

Our goal was to implement an approach to character-
ize relatively undisturbed areas across environmental
gradients. Protected areas usually include ecosystems
little modified by human activities. We use, as an exam-
ple, the National System of Protected Areas (SNAP) of
Argentina, which ranks first in the southern hemisphere
in the diversity of biomes represented, the range of
climates incorporated and the quality of protection pro-
vided (Anon. 1992). We show that protected areas pro-
vide a unique opportunity for deriving baseline/refer-
ence situations to evaluate the impact of global change
on terrestrial ecosystems. Moreover, functional ecosys-
tem attributes measured through remote sensing tech-
niques can provide a ‘common currency’ for definition
of reference conditions across geographical regions.

Our specific objectives were to analyse functional
attributes related to the energy flow (light absorption),
water dynamics (evapotranspiration) and the interannual
variability of such variables across a broad geographical
region (22° - 54° S). We describe also the range of NPP
associated with different biomes derived through pub-
lished light use conversion efficiency coefficients. We
were especially interested in deriving empirical rela-
tionships between ecosystem functional attributes and
their variability across environmental gradients. Such
empirical models permit generalization about potential
functioning of the vegetation over extensive areas.

Material and Methods

We used Normalized Difference Vegetation Index
(NDVI) and surface temperature (Ts) data derived from
the Pathfinder AVHRR Land (PAL) database to charac-
terize the vegetation functioning of 13 protected areas in
Argentina (Fig. 1). These spectrally derived variables
were surrogates for fPAR and actual Et. From fPAR we
calculated NPP.

The analysis encompasses vegetation extending
across gradients of mean annual precipitation from 50 to
1700 mm and mean annual temperature from 5 to 25 °C.
We geo-referenced all protected areas included in the
national system larger than 470 km2 on Landsat TM
images and on topographic maps (scale 1 : 250 000;

Instituto Geográfico Militar, Argentina). Because of
these criteria, some important biomes, such as the Pam-
pas grasslands and the Patagonian steppes, were not
included in our analyses.

The PAL images have a spatial resolution of 8 km ×
8 km (James & Kalluri 1994, ftp://daac.gsfc.nasa.gov/
data/avhrr/). The database included 432 10-day com-
posite images, covering the period July 1981 to June
1993. NDVI was calculated as (ch2 – ch1)/(ch2+ch1),
where ch1 and ch2 are the reflectance in channel 1 (0.58-
0.61 µm) and channel 2 (0.725-1.l  µm) measured by the
AVHRR sensor. Ts was calculated from channel 4 (10.3-
11.3 µm) and corrected by the surface emissivity using
NDVI and channel 5 (11.5-12.5 µm) (Sobrino et al.
1991). To minimize the effect of errors associated with
sensor degradation, sensor angle and atmospheric con-
tamination not removed by prior processing, we cor-
rected each raw NDVI value using the NDVI of the
Atacama desert (23° S - 69° W), in northern Chile,
assuming constant and null NDVI for this region
(Kaufman & Holben 1993); any temporal variation in
NDVI of the Atacama desert was assumed to be noise.
Then: NDVIi-corrected = NDVIi-raw – NDVIi- Atacama,
where i represents the image number from 1 to 432.
Negative values were discarded and the entire data-
base was filtered for inconsistent values. Viovy et al.
(1992) showed that a rate of change of NDVI of 2% per
day lacks biological significance for natural vegeta-
tion. Suspect values were replaced by more representa-
tive ones recorded previously or immediately follow-
ing. The use of the maximum or the mean value of the
previous and the following values to replace the sus-
pect values did not alter the general patterns presented.
Each protected area was characterized for each date by
the mean of NDVI and Ts of four pixels entirely in-
cluded in the area. For areas including more than four
pixels a random selection was performed among pixels
completely included in the main vegetation type of the
protected area.

For each pixel we derived four annual attributes
from the NDVI curves: the annual NDVI integral (NDVI-
I), the maximum NDVI (Vmax), the date of the maximum
NDVI (Dmax) and the relative range (Rrel). NDVI-I is an
estimator of fPAR (Tucker & Sellers 1986) and is the
annual NDVI mean from July to June. Rrel is an estima-
tor of the seasonality of the light absorption – (Vmax–
Min NDVI)/NDVI-I. We also characterized the
interannual variability of each attribute using the coef-
ficient of variation over the 13 years of the study
(CV% = standard deviation/mean × 100).

To assess the spatial and interannual variability of
latent heat exchange between the vegetation and the
atmosphere, we applied a simple correlative model to
estimate actual Et from remotely sensed data. We
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calculated mean monthly Et from mean meteorologi-
cal data (Anon. 1985) for ten of the study areas for
which appropriate data were available. Potential Et
(Anon. 1985) was calculated using Penman’s equation
(Allen et al. 1988). To calculate actual Et we used the
following decision rules:

(1)

where etpi is monthly potential evapotranspiration, ppi

is monthly precipitation, stwi is the water storage in the
soil and etri is actual evapotranspiration.

A model that uses soil texture (derived from a
national soil database; Anon. 1990) was used to esti-
mate soil water holding capacity (whc, Saxton et al.
1986). Soil water storage ranged between 68 and 416
mm. Because of differences in the grain of the soil
maps and the PAL data, it was impossible to assign a
whc to each pixel. We then assumed a uniform whc
close to the mode of the different soils included in the

Fig. 1. Protected areas included in the analysis. Marginal plots show the dynamics of mean values of NDVI ___ and Ts - - - over
12 yr (1981-93) and four pixels (4 × 64 km2). Left axis corresponds to NDVI and right axis to Ts (°C). Shaded areas indicate the
main biomes of southern South America (after Hueck & Seibert 1981): deserts (De), dry temperate forests (DteF), dry tropical
forests (DtrF), grass steppes (GS), humid temperate forests (HteF), humid tropical forests (HtrF), prairies (Pr), rainforest (RF),
and shrub steppes (SS). See Apps. 1-3 for detailed descriptions of protected areas.
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Results

NDVI and Ts provided good estimates of monthly
actual evapotranspiration as calculated from meteoro-
logical data (etrmet). The best model fitted at the regional
scale is (r2 = 0.84; n = 113; p < 0.0001):

etrmet (mm/month) = Ts * NDVI * 5.57 (3)

To test the stability of the general model (2), we
constructed an independent model for each protected
area (Table 1). Annual mean surface temperature for A
particular site (Tsavg) accounted for 65% of the regional
variability of the slope of the relationship (Slope = 23.11
– 12.41 logTsavg; n = 10, p = 0.0049). Thus, the general
evapotranspiration model can be rewritten as:

etrmet (mm.mo–1) = Ts * NDVI * [23.11 – 12.41 log (Tsavg)] (4)

The evaluation of the general model showed that etr
estimates derived from meteorological and remotely
sensed (etrsat) data were highly correlated (etrmet = 1.02;
etrsat - 88.20; r2 = 0.82; n = 28; F = 132.8; p < 0.0001)
and did not differ from the 1 : 1 line (F-test, F = 0,005,
p > 0.8, df = 52).

Seasonal trajectories in the NDVI-Ts space varied
with vegetation type from linear to cyclic patterns (Figs.
1 and 2a). We quantified the trajectory by the coefficient
of determination (r2). Coupling of seasonal dynamics of
NDVI and Ts was highest in temperate forests, interme-
diate in subtropical forest and grassland ecosystems and
lacking in shrub steppes. In general, forests present
lower slopes than the steppes. Only one site (RF, in

study. A sensitivity analysis showed negligible effects
of whc on the model fitted at regional scales. The PAL
remotely sensed variables included in the model were
mean monthly Ts and NDVI. June to August data for
humid temperate forests (54° S) were discarded be-
cause of the lack of reliable satellite data during winter
months.

We evaluated linear regression models, using a
stepwise procedure (Anon. 1996), including Ts and
NDVI, their logarithmic and exponential transforma-
tions and their interaction (Ts*NDVI) as independent
variables, and etri as dependent variable. We also
calculated actual evapotranspiration from the correla-
tive model proposed by Di Bella et al. (2000). We
evaluated our model by comparing the annual etr esti-
mates for a random set of 28 climatic stations from
FAO (Anon. 1985) in unprotected areas. We tested (F-
test) whether the regression line differs from the 1 : 1
line. The use of only Ts and NDVI to estimate etr is
clearly a simplification (although widely used; Moran
et al. 1994) because it does not include all the terms of
the energy balance of a surface (net radiation and
wind).

To translate our comparative index of carbon gains
(NDVI-I) into a biological meaningful variable, we
calculated NPP from remotely sensed data using the
model proposed by Monteith (1981).

NPP [g-dry-matter.m–2.yr–1) = e * PAR * fPAR (2)

Where e = light use efficiency (a coefficient of conver-
sion of absorbed light into total dry matter) and PAR
the incoming photosynthetically active radiation de-
rived from FAO (Anon. 1985). fPAR was estimated
from NDVI by linear interpolation between the NDVI
corresponding to areas with zero light absorption
(Atacama desert, 69° W, 23° S) and near 100% of light
absorption (Amazonian rainforest, 69° W, 10° S). The
values of e for each vegetation type were obtained
from Field et al. (1995) and converted to dry matter
assuming a carbon to dry matter ratio of 0.475 (0.595
(g-dry-matter.MJ–1] for Humid Temperate forest, 0.745
for Rain forest/Humid Subtropical forest, 0.635 for
Dry forest, 0.437 for Shrub steppes and 0.629 for
Grassland/grass steppe). Regrettably, no data are avail-
able to evaluate the NPP estimates generated across
such a wide environmental gradient.

Table 1. Slope and coefficient of determination (r2) of the
models of the relationship between monthly etr and Ts.
NDVI for each protected area and for all the sites. The slope
(± SE) and the coefficient of determination for each site
indicate the parameter for the model of the same form as the
general (etr = a.Ts.NDVI). In every case the models were
significant (p < 0.001). * denotes slopes statistically differ-
ent from the slope of the general model, tested by an F
hypothesis test. See Fig. 1 for protected area codes.

Protected area Slope r2 n

DteF 5.60 ± 1.04 0.69 12
DtrF1 *3.88± 0.52 0.81 12
DtrF2 *7.42 ± 0.39 0.96 12
GS1 *11.03 ± 1.45 0.82 12
GS2 *1.80 ± 0.21 0.85 12
HteF1 *15.08 ± 1.93 0.88 8
HteF3 7.91 ± 1.04 0.82 9
HtrF 4.88 ± 0.38 0.93 12
Pr 5.88 ± 0.53 0.90 12
SS 5.04 ± 0.86 0.73 12

All the sites 5.57 ± 0.24 0.84 113
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tropical forest) presented a significant negative relation-
ship. We detected an inverse relationship between the
strength of the seasonal coupling between NDVI and Ts
and mean annual air temperature (MAT). MAT accounted
for 55% of the regional variability in r2 (Fig. 2b), with
warm areas showing least coupling of dynamics of
NDVI and Ts. The NDVI-I accounted for 49% of the
regional variability in the difference between Tsavg and
MAT (Fig. 2c).

Mean annual precipitation (MAP) was positively
associated with NDVI-I and Vmax (Fig. 3a, c). A satura-
tion function best described the relationships, with Rrel
lowest at high MAP (Fig. 3b). MAT accounted for 78% of
the regional variability in Rrel (Fig. 3e). Regional patterns
of the other attributes were not significantly associated
with the temperature gradient (Fig. 3d, f). Dmax did not
have a significant relationship with MAP or MAT.

Fig. 2a. Seasonal trajectories of the 1981-1993 mean 10-day
NDVI and Ts for seven selected sites and the corresponding
regression lines. b. Regional relationship between the strength
of NDVI-Ts relationships (coefficient of determination of the
NDVI-Ts relationship) and MAT for the 13 protected areas:
r2

(NDVI–Ts)= 0.90 – 0.032MAT; r2 = 0.55; p < 0.01). c. Differ-
ence between mean Tsavg and MAT along the NDVI-I re-
gional gradient:
Tsavg – MAT = 13.73 – 18.81NDVI-I; r2 = 0.49; p < 0.01).

Fig. 3. Relationship between climatic gradi-
ents (MAP and MAT) and NDVI attributes of
13 protected areas of Argentina for the 1981-
1993 period. Error bars show SD for four
pixels per site. A. and D. NDVI-I; B. and E.
Rrel; C. and F. Vmax. Linear regression lines
are significant, p < 0.01.
A. NDVI-I = –0.93+0.48 logMAP, r2= 0.81;
B. Rrel = – 0.00069.MAP + 1.68, r2= 0.48;
C. Vmax = –0.91+0.56 logMAP, r2= 0.78;
E. Rrel = 0.248 + 0.232.MAT – 0.0097.MAT2,
r2 = 0.78.
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Fig. 4. NPP of protected areas in Argentina as estimated
from remotely sensed data. Mean annual values for the 13
protected areas are plotted against MAP, n = 13; r2 = 0.87;
p < 0.0001.
NPP (g-dry-matter.m–2.yr–1) = –25.33 + 1.076 MAP (mm).
Solid line shows the best fit and dotted line 95% confidence
intervals. Error bars show SD for 12 growing seasons.

Fig. 5. Relationship between climatic gradi-
ents (MAP and MAT) and etrsat attributes of
13 protected areas in Argentina for the 1981-
1993 period. Error bars show s.d. for four
pixels per site.
A. and D. etrsat; B. and E. Seasonal coeffi-
cient of variation; C. and F. Maximum
evapotranspiration. Regression lines are sig-
nificant, p < 0.01.
A. etrsat (mm) = 117 + 0.32. MAP, r2= 0.67;
C. Max. monthly etrsat (mm) = 31.4 + 0.068.
MAP, r2 = 0.76;
D. etrsat (mm) = 132.2.e(0.087.MAT), r2 = 0.55;
E.  Rrel = 74.25 – 1.89.MAT, r2 = 0.70.

use efficiency (PUE), defined as the slope of the re-
gional regression between NPP and MAP, was 1.076 g-
dry-matter.m–2.mm–1. The ineffective precipitation (i.e.
the X-intercept; Sala et al. 1988) was 23.55 mm.yr–1.

Mean annual actual etrsat increased from a grass
steppe site (< 100 mm.yr–1) to a tropical forest site (>
1100 mm.yr–1, Fig. 5a). etrsat was positively correlated
with MAP (Fig. 5a) and MAT (Fig. 5d). Maximum
monthly evapotranspiration was positively correlated
with MAP (Fig. 5c). etrsat seasonality was negatively
correlated with MAT (Fig. 5e) and unrelated to MAP
(Fig. 5b).

We found a strong negative relationship between
precipitation and the coefficient of variation of NDVI-I
(Fig. 6a). CV NDVI-I decreased from shrub steppes (SS,
20%) to humid tropical forest (HtrF, 2%). CV Rrel was,
in general, higher than CV NDVI-I (Fig. 6a, b). Vmax and
NDVI-I were both negatively correlated with precipita-
tion across years (Fig. 6c). CV Vmax was lower than the
CV NDVI-I for all sites. The interannual variability of
NDVI-I and Vmax was best fitted by an optimum function
change along the MAT gradient (Fig. 6d, f). MAT posi-
tively accounted for the interannual variability of the
Rrel (Fig. 6e) and Dmax. No clear patterns of change in the
coefficient of variation of etr were detected across MAP
or MAT gradients.

Estimated NPP ranged from 83 g-dry-matter.m–2.yr–1

in grass steppes to more than 1700 in rainforest (Fig. 4).
A fitted linear model was significant for NPP along the
MAP gradient for all the sites. The mean precipitation
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ecosystems, data are even scarcer. For Nothofagus tem-
perate forests in Argentina and Chile, fine litter produc-
tion (Veblen et al. 1996) had a range of 200 to 740 g-dry-
matter.m–2.yr–1 from south to north. For a site located
200 km south of site HteF2, Austin & Sala (2002)
showed a fine litter production of the tree canopy of 315
g-dry-matter.m–2.yr–1. This figure may represent 70%
of NPP above-ground (Austin pers. comm.) because
wood increment and understorey production were not
considered. We did not find data for the other forest
ecosystems.

NPP estimates based on Monteith’s equation (1981)
are highly dependent on e-values. Many uncertainties
still remain in estimates of e for different biomes (Goetz
& Prince 1999). The use of Monteith’s equation, how-
ever, circumvents some difficulties with other models.
We were not able to use alternative models to estimate
NPP from remotely sensed data (e.g. Coops & Waring
2001) because they were biome specific, or dependent
on detailed meteorological data that we lacked for the
full data set.

Our estimates of NPP were not evaluated against
field data, so they may be most useful as indicators of
trends in carbon gains across the main environment
gradient. However, the parameters of the NPP-MAP
relationship had a good correspondence with previous
studies. The slope of the above-ground NPP-MAP

Discussion

Our approach, based on a regional analysis of pro-
tected areas and functional attributes, provided a de-
scription of how ecosystem functioning and its variabil-
ity change across environmental gradients under
minimum human alteration. Despite the differences in
vegetation structure and seasonality among the sites,
MAP was a good estimator of NDVI-I, a descriptor of
light absorbed by the canopy. The relationship between
MAP and both NDVI-I and Vmax across the analysed
gradient showed a saturation type form (Fig. 3a). Previ-
ous studies showed this type of relationship between
NDVI-I and MAP (Box et al. 1989; Paruelo & Lauenroth
1995). The linear relationship between NPP and MAP
may arise from the differences in incoming radiation
and light use efficiency among sites. Differences in the
relationships of NDVI-I and NPP with MAP for some
areas could be a consequence of the intrinsic capacity of
each biome to transform radiation into biomass as well
as the differences in incoming PAR among sites.

Few field based estimates of NPP field data are
available for South American biomes. Most studies
recorded only above-ground NPP in grasslands and
shrublands (e.g. Pucheta et al. 1998). Moreover, none
of this information comes from protected areas and
only part of it covers more than one year. For forest

Fig. 6. Relationship between climatic gradi-
ents (MAP and MAT) and NDVI attributes of
13 protected areas in Argentina for the 1981-
1993 period. Error bars show s.d. for four
pixels per site. A. and D. Coefficient of vari-
ation of NDVI-I; B. and E. CV of Rrel); C. and
F. Coefficient of variation of  Vmax.
A. CV NDVI-l = 17.01 – 0.0083.MAP;
r2 = 0.53; p < 0.01.
B. CV Rrel = 15.09 + 0.013.MAP;
r2 = 0.32; p < 0.05.
C. CV Vmax = 12.59 – 0.0071.MAP;
r2 = 0.62; p < 0.01.
D. CV NDVI-l = –5.1 + 3.19.MAT – 0.12 MAT2;
r2 = 0.55; p < 0.1.
E. CV Rrel = 3.6 + 1.37.MAT;
r2 = 0.58; p < 0.01.
F. CV Vmax = –8.4 + 2.75.MAT – 0.09 MAT2;
r2 = 0.40; p < 0.01.
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relationship, PUE, ranged between 0.26 to 0.85 g-dry-
matter.m–2.mm–1 (McNaughton et al. 1993). For South
American sites distributed across a mean annual pre-
cipitation gradient from 100 to 1400 mm, the above-
ground NPP-PUE was 0.48 g-dry-matter.m–2.mm–1

(McNaughton et al. 1993). Our results for NPP had a
slope twofold higher than that for the above-ground
NPP data. For shrubland and grassland areas Milchunas
& Lauenroth (1992) suggested a ratio for above-ground/
below-ground NPP between 1.76 and 3.76. Data give a
ratio of 0.32 for tropical forests (Wright 1996) and 0.78
for temperate forests (Curtis et al. 2002). Our X-inter-
cept was 38 mm below the reported value for above-
ground NPP in South America. It was, however, in the
range reported for other regions of the world (23 -148
mm; Noy Meir 1973, Sala et al. 1988, McNaughton et
al. 1993).

MAP was associated with both descriptors of NPP
dynamics (Fig. 3b, c), but Dmax had no relationship with
environmental variables. This may be due, in part, to the
effects of high winter precipitation occurring during
vegetation senescence and becoming available only with
spring snow melt in colder regions. Site HteF1, the
southernmost area considered, consistently had an ear-
lier NDVI peak than the other sites. Low temperatures in
late summer could initiate senescence, as suggested for
an altitudinal gradient (Barrera et al. 2000).

Across the studied biomes, we found a more diverse
range of responses of the NDVI-Ts trajectories than
previously shown for North America (Nemani & Run-
ning 1997). A summary of the trajectories of NDVI-Ts
based on maximum values may not capture fully the
heterogeneity of biomes studied here because the ap-
proach conceptually ignores biomes with NDVI-Ts
negative correlations, as we found for one site. Problems
with the use of maximum values may be particularly
serious for mediterranean climates, where NDVI and Ts
peaks can be highly decoupled (e.g. site DteF). Ts peaks
earlier than NDVI for all of our sites. We suggest that the
slope of the NDVI-Ts relationship might reflect at least
two important functional features of vegetation. First, it
reflects the ecosystem-specific functional response to
seasonal temperature variations. Vegetation types with
high NDVI-I values had lower slopes than those with
low NDVI-I, which suggest that vegetation is buffering
effects of temperature increase. Second, we suggest that
this slope could be used to evaluate the impact of land
use. We hypothesize a wide variety of functional re-
sponses for each vegetation type depending on land use
change. For instance, the replacement of temperate for-
est with evergreen trees would increase the slope be-
cause of higher minimum NDVI value with similar
winter temperatures and similar maximum values for
NDVI and Ts. The replacement of a subtropical forest by

cropland would reduce the slope because of a decrease
of minimum NDVI and an increase of minimum Ts and
similar maximum NDVI and Ts values.

The coefficient of determination of the NDVI-Ts
relationship integrates, in part, differences between dy-
namics of leaf expansion, defined as the period of NDVI
increase and senescence. High r2 indicates similar rela-
tionships between NDVI and Ts during leaf expansion
and senescence. However, Ts was higher during leaf
expansion than during senescence for all biomes and Ts
peaked earlier than NDVI, even for rainforest, where
NDVI and Ts were negatively correlated. At a global
scale and at a coarse spatial resolution, the correlation
between weekly NDVI and Ts varies with latitude, a
surrogate of MAT (Schultz & Halpert 1995). Our results
support this pattern; additionally, we separate the trajec-
tories of leaf expansion and senescence. We showed
that MAT accounted for most of the regional variability
of the NDVI-Ts seasonal relationship.

Characterization of the temporal variability of eco-
system attributes is critical for detection of changes or
trends associated with management, degradation or glo-
bal change. Our analysis not only provides regional
estimates of the interannual variability of six functional
attributes but also shows relationships of that variability
to environmental variables. Other studies have shown
decreased seasonal variability of total carbon gains as
MAP increases (Fig. 6a) (Paruelo & Lauenroth 1998).
We showed that Vmax shows a similar behaviour. How-
ever, NDVI-I varied more between years than Vmax (Fig.
6a, c). As noted in other studies (e.g. Paruelo et al. 1999)
the coefficient of variation of total carbon gain is lower
than the coefficient of variation of precipitation, sug-
gesting that climatic variability is buffered with respect
to ecosystem functioning.

The interannual variability of carbon gains and
seasonality also varied across the MAT gradient. Again,
NDVI-I and Vmax had a different response than Rrel (Fig.
6d, e, f). We hypothesize that high variability in NDVI-
I and Vmax in the middle portion of the gradient is a
consequence of variability in water flux, because these
sites are also the driest. Our analysis did not include a
site in a temperate humid area, such as the Pampas
grasslands, because there are no large protected areas in
this region.

We present, then, baseline conditions to evaluate the
impact of global changes across environmental gradi-
ents. We developed, for a broad range of environmental
conditions over a large part of South America, quantita-
tive relationships between vegetation functioning and
climatic variables. These may be used to extrapolate
information gathered on protected areas across human
modified areas and to generate maps representing de-
parture from more natural, less modified ecosystems.
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This approach may be replicated in different areas to
derive quantitative relationships among vegetation traits
and climatic variables. Such analysis would not only
improve the relationships found but also may describe
important contrasts among areas differing in flora, evo-
lutionary history or human impact.
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